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Abstract

Cervical cancer is a significant contributor to female mortality on a global scale, especially in low-income countries where effective
screening programs for the detection and treatment of precancerous conditions are lacking. Classification of pap-smear test cervical
cell images is crucial as it gives essential information for the diagnosis of malignant or precancerous lesions and thus helps in pro-
viding a proper diagnosis. Most of the existing methods require accumulating pap-smear test images of all patients in a centralized
location for classification purposes. However, this procedure may hamper the privacy of patient data and create data ownership
issues. In this study, different convolutional neural network-based federated learning architectures are introduced to achieve both
the objectives of accurate image classification and data privacy in three different experimental settings. In the proposed system, the
updates of the locally trained models get aggregated with an initially untrained global model in order to increase its performance.
In traditional ML-based systems, the more the train data, the more efficiently the model performs, but in the proposed system,
clients can participate remotely to train a robust model even with the disadvantage of possessing a small dataset. The proposed
CNN-based FL architecture showed test accuracy of 94.36% and 78.4% in an IID (Independent and Identically Distributed) and
a non-IID setting respectively. Thus multiple hospitals across different countries can use the proposed system to train their local
models with their private dataset without sharing it centrally, which eventually will help to build the central model of federated
learning architecture with diverse datasets.
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1. Introduction

Cervical cancer originates in cells of the cervix, a lower end
of the uterus. This cancer typically remains asymptomatic in
the early stages. Severe cervical cancer symptoms include vagi-
nal bleeding after or between periods, watery and odorous dis-
charge, and pelvic pain etc. The human papillomavirus (HPV),
a sexually transmitted infection, is accountable for more than
95% cases of cervical cancer. In 2020, there was a global esti-
mation of 604,127 new cases and 341,831 deaths due to cervical
cancer [1]. With 569,847 new cases every year, cervical cancer
has become the fourth most frequent disease afflicting women
globally, after breast, colorectal, and lung cancers [2].

Regular clinical checkups and Pap tests are crucial for the
timely detection of cervical cancer in women [3]. The Pap test
is a widely used method to collect cells from the cervix and
examine them for any anomalies that may suggest the existence
of cancer. With early identification of these unusual cells, the
Pap smear test can prevent the progression of cervical cancer.
In the proposed system, a famous dataset named SIPaKMeD
[4] is used where cervical cell images are classified into one
of these five categories: Dyskeratotic cells, Koilocytotic cells,
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Metaplastic cells, Parabasal cells and Superficial-Intermediate
cells.

If Dyskeratotic cells are present in a pap smear, it may indi-
cate either infection or inflammation in the cervix, or it may be
a sign of precancerous or cancerous cells. These cells are char-
acterized by having vesicular nuclei that are similar to Koilo-
cytotic cells. There are various causes of Dyskeratotic cells
in a pap smear, such as Human papillomavirus (HPV) infec-
tion, Chlamydia infection, Herpes simplex virus (HSV) infec-
tion, Bacterial vaginosis, Yeast infection, use of hormonal birth
control, and smoking.

Koilocytes are epithelial cells with a hyperchromatic nucleus
that is replaced by perinuclear vacuole(s). Pathologists use
these morphological changes to detect HPV-infected epithelial
cells in Pap smears. Both low-risk and high-risk HPV infec-
tions show Koilocytosis in clinical biopsies. The appearance
of Koilocytotic cells in the differentiated layers of the squa-
mous epithelium is a well-known sign of human papillomavirus
(HPV) infection [5].

Squamous metaplastic cells possess unique cellular bound-
aries and may exhibit eccentric nuclei and occasionally contain
a significant intracellular vacuole. Depending on their size, they
can resemble either small or large parabasal-type cells. There is
a discernible contrast between squamous metaplastic cells and
parabasal cells. Squamous metaplastic cells exhibit a more in-
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tense stain in the cytoplasm and display a high level of consis-
tency in terms of their size and shape compared to parabasal
cells. These cells in Pap test results don’t necessarily indicate
malignancy; rather, they indicate that cervical squamous cells
have changed but there are no alarming anomalies.

Parabasal cells are the smallest squamous epithelial cells
seen on a typical vaginal smear. It is important to note that an
elevation in parabasal cells on a vaginal smear doesn’t always
imply the existence of cancerous cells, yet it might indicate an
abnormality. To find out the root of such an abnormality, ad-
ditional examinations like a colposcopy or biopsy may be nec-
essary. Women are encouraged to undergo regular Pap smear
tests to monitor their cervical health and identify any potential
problems promptly.

Superficial-intermediate cells make up the vast bulk of the
cells detected during a Pap test. They typically have rounded,
oval, or polygonal shaped cytoplasm stains. These cells contain
a pycnotic nucleus in the center. These cells have recognizable
nuclear boundaries (small, pycnotic nuclei in superficial cells,
and vesicular nuclei in the intermediate cells), and big, polyg-
onal cytoplasm that is clearly defined. These cells exhibit the
morphological alterations caused by more severe lesions.

There have been multiple studies in order to classify cervi-
cal cancer using different Machine Learning and Deep Learn-
ing approaches [6]. Researchers used Softmax regression (SR),
Support vector machine (SVM), and GentleBoost ensemble of
decision trees (GEDT) as three different classifiers to identify
cervical cancer [7]. The study of Ghoneim et al [8] showed the
development of a cervical cancer categorization and detection
method based on CNN. Three CNN models and an ELM-based
classifier were studied. The shallow CNN model was trained
and tested using the 5-fold cross-validation method on the Her-
lev dataset. They concluded by demonstrating how the ELM-
based classifier produced a greater accuracy than all the other
methods. In another research [9], the Herlev and SIPaKMeD
datasets were integrated for the purpose of detecting cervical
cancer. They demonstrated their ability to successfully analyze
multi-layer cervical cells and developed a binary and multi-
class classification pipeline to identify cancer in Pap smear im-
ages.

Deep learning models for the semantic segmentation of im-
ages require a huge amount of data. Obtaining enough data in
the field of medical imaging is a major challenge. This chal-
lenge could be addressed through collaboration between differ-
ent institutions. Sharing medical data in a centralized location
creates various legal, privacy, technical, and data-ownership
challenges. Thus for the classification of cervical cancer, a Fed-
erated Learning (FL) aided system is proposed in this study.
Federated Learning allows individual hospitals to benefit from
the rich datasets of multiple non-affiliated hospitals without
centralizing the data in one place. Federated Learning utilizes
diverse datasets of numerous collaborators to build a strong
deep-learning model.

Despite the fact that there have been a number of studies
in this area, further study is required to more accurately clas-
sify cervical cancer using cutting-edge ML and FL techniques.
There hasn’t been much research done to classify cervical can-

cer cells using different Federated Learning approaches. More-
over, the results of existing systems could be improved more
with better-performing neural networks. Therefore, the objec-
tives of this research are as follows:

i. To propose different deep learning architectures for the
prediction and classification of cervical cancer in two IID set-
tings and one non-IID setting.

ii. To enhance the efficiency and performance of the pro-
posed deep learning architectures integrated with FL using
hyper-parameter tuning.

iii. To compare the performance of the proposed FL-based
deep learning architectures with the traditional ML models.

This paper is structured into several sections. Section 2
briefly introduces related studies. Section 3 offers an overview
of the federated learning framework while Section 4 provides
a description of the research methodology. In Section 5, the
main development of the CNN-based federated learning archi-
tecture is presented along with the results obtained. Section 6
delves into the development of classical ML models. Section
7 provides their performance comparison with CNN-based FL
architecture. Finally, the conclusion is presented in Section 8.

2. Literature Review

A number of studies have been carried out in the Medical
Imaging domain to determine the application of Deep Learn-
ing and Federated Learning in the detection, segmentation, and
classification of various types of cancer cells.

An overview of using deep learning and machine-learning
algorithms was provided in a study [10], to aid the research of
cervical cancer. They explored well-known datasets like Her-
lev and ISBI and discovered a new publicly accessible database
called “SIPaKMeD” for classification purposes. The Herlev
dataset, produced by the Herlev Medical University in Den-
mark, focuses on Pap smear benchmarking, while the ISBI
challenge database consists of multi-layered cervical cell vol-
umes. The use of deep learning and machine-learning ap-
proaches in differentiating and classifying cervical cytopathol-
ogy images was highlighted here. Here, the potential for devel-
oping more advanced models was suggested to improve accu-
racy in cervical cytopathology image processing in the future.

The use of hybrid pipelines for the detection and classifica-
tion of aberrant regions in liquid-based cytology (LBC) pictures
using a combination of deep learning (DL) and traditional ma-
chine learning (ML) techniques was demonstrated in another
study [11]. They made use of a personal database containing
1920 x 2560 pixel photos. They demonstrated how to inspect
cervical samples using a RetinaNet model for the detection of
aberrant regions. Taha et al. used a pre-trained CNN archi-
tecture along with a support vector machine for the detection
of Cervical Cancer [12]. For the pre-trained architecture, the
AlexNet was used to extract the desired features. They showed
how it performs better in test recall, precision, specificity and
accuracy scores than other techniques. Again, a focused study
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included reviews of the various cervical cancer diagnostic tech-
niques [13]. They have covered state-of-the-art methodologies
expressed in major articles on computer-assisted diagnostic sys-
tems for cancer detection. The study emphasizes future options
for the development of a cost-effective, automated disease clas-
sification system.

DeepCervix, a hybrid deep feature fusion (HDFF) technique
was first used for classification of cervical cytopathology cells
[14]. This study presented two distinct steps of data augmen-
tation strategies in dataset pre-processing step. XceptionNet,
ResNet50, VGG16, and VGG19 were the four enhanced CNN
types introduced to extract complementing features. Prior to the
Softmax (SM) layer in each of the DL models, they extracted
the features in order to construct feature arrays with 1024 fea-
tures. To carry out the classification, the feature arrays were
then fed into a sequential model that was connected to a dense
layer with batch normalization (BN) and a dropout layer in be-
tween. This study also used Late Fusion (LF) approach for cer-
vical cancer classification. The performance metrics showed
that the HDFF approach performed better than the LF method
in terms of classification accuracy.

A novel approach (CVM-Cervix) was put forth in another
study [15] that enhanced the overall classification of single-
cell cervical cytopathological images by utilizing CNN, Visual
Transformer for local and global feature extraction. Moreover,
a Multilayer Perceptron module was used to receive the re-
trieved features for fusion and classification. Eleven different
categories of images were obtained from SIPaKMeD and CRIC
datasets. Additionally, the model was compressed using a sim-
ple post-processing technique.

In [16], an experimental framework was developed to com-
pare the robustness of deep learning techniques in multiscale
cell image categorization challenges. This study made use of
raw data, gathered from 4049 cell images in the SIPaKMeD
public dataset. Next, in order to produce scaled and standard-
ised data, the raw data were pre-processed. Training samples
were created by resizing the scaled and standard data to 224 ×
224 pixels. Ultimately, 22 trained deep learning models were
utilized to classify unseen test photos. The outcomes showed
that the deep learning technique is remarkably resilient to vari-
ations in the cell aspect ratio in cervical cytopathological pic-
tures. This was due to the fact that, despite variations in aspect
ratios, the nucleus contained the majority of the visual infor-
mation that set each cell apart. This offered a valid cause for
categorizing the cell images.

In [17], a weakly supervised method was proposed for iden-
tifying images of cervical cancer nests using Conjugated At-
tention Mechanism and Visual Transformer (CAM-VT), which
could efficiently and accurately examine pap slides. Conjugated
attention mechanism and visual transformer modules were used
for local and global feature extraction, respectively. An ensem-
ble learning module was then designed to enhance the identi-
fication capacity. They performed comparison studies on their
datasets to arrive at a plausible interpretation. The average ac-
curacy of the validation set of three repeated trials using this
framework was 88.92%, which outperformed 22 well-known
deep learning models.

An extensive research on deep learning algorithms for im-
age segmentation and classification in cervical cytopathology
was reviewed in another study [18]. Additionally, key ideas in
deep learning were described together with the prevalent archi-
tectures for them. The review revealed that there is growing in-
terest in the field of deep learning for image processing related
to cervical cytopathology. The study found that the majority
of cutting-edge techniques for classification and segmentation
have been used on the same dataset. So, it was easy to deter-
mine which algorithm was superior to the others.

For the first time, federated learning was presented in a study
on the modality of cardiovascular magnetic resonance (CMR)
[19]. They modified a 3D-CNN network pretrained on action
detection and investigated two distinct methods of adding shape
prior knowledge into the model, as well as four different data
augmentation setups, systematically examining their impact on
the various collaborative learning options. They demonstrated
that, despite the limited amount of the data (180 people from
four centers), privacy-preserving federated learning produced
promising results that are competitive with standard centralized
learning.

Federated learning enabled deep learning model was used on
multimodal brain scans [20]. The quantitative results show that
federated semantic segmentation models perform similarly to
models trained by sharing data. The comparison was shown
among federated learning and two other collaborative learning
methods and a conclusion was drawn that the performance of
these methods fall short than that of federated learning.

A Federated learning-based cancer diagnosis model was
proposed where six first-level impact indicators were identi-
fied, as well as historical case data from cancer patients were
collected[21]. Various physical examination indicators of pa-
tients were used as input in this framework. An auxiliary di-
agnostic model was built using patients’ recurrence time and
location, and comparison algorithms included linear regres-
sion, support vector regression, Bayesian regression, gradi-
ent ascending tree, and multilayer perceptrons neural network.
CNN’s federated prediction model outperformed single model-
ing machine learning tree model, linear model, and neural net-
work in terms of accuracy.

In a study conducted by Pati et al. [22], the most compre-
hensive attempt was taken to develop a precise and generaliz-
able machine learning model for detecting glioblastoma sub-
compartment boundaries in real-world settings. FL provided
unprecedented access to the most common and fatal adult brain
tumor dataset, as well as meaningful ML training to ensure
model generalizability across out-of-sample data. As Federated
Learning enabled large and diverse data, the final consensus
model outperformed the public initial model against both the
collaborators’ local validation data and the entire out-of-sample
data.

In another study, the feasibility of using differential-privacy
techniques was investigated to protect patient data in a feder-
ated learning setup [23]. They developed and tested practical
federated learning systems for brain tumor segmentation on the
BraTS dataset. The experimental results revealed that there is
a tradeoff between model performance and privacy protection
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costs. How data dispersion affects FL performance was an out-
come of the research conducted by Adnan et al. [24]. The
authors explored the possibility of learning from distributed
medical data via differentially private federated learning. They
mainly showed how FL might be utilized in clinical contexts
to guarantee data privacy while also ensuring minimal perfor-
mance reduction. One study gave an outline of how federated
artificial intelligence can be used in medical imaging applica-
tions while maintaining security and privacy [25]. They talked
about how AI has changed the area of medicine, what is needed
for the best privacy preservation, and the privacy and security
concerns with medical imaging.

To maintain patient data privacy, Federated Learning algo-
rithms were used for the diagnosis of three types of cancers,
namely cervical, lung, and colon cancer through pictures from
CT and MRI scans in the study [26]. Here, two FL algorithms,
namely FedAvg and FedProx were used to assess the effective-
ness of Federated Learning algorithms in diagnosing cancer
cells. To ensure enhanced Performance, Bayesian optimiza-
tion was used to tune the hyperparameters for both local and
global models. The dataset includes CT/MRI images of the cat-
egories of cervical, lung, and colon cancer lesions, collected
from Kaggle. They were able to demonstrate that federated
learning models surpass conventional deep learning models in
terms of prediction accuracy.

In addressing diagnostic challenges in gynecological malig-
nancies, particularly lymph node metastasis (LNM), Zhijun et
al. [27] pioneered an integral approach using federated learning
and a multimodal evaluation framework. Traditional imaging
techniques, such as CT, MRI, and PET/CT, may face limitations
in LNM detection quite often. By combining text and image
data to ensure enhanced prediction accuracy, they introduced
a composite neural network model within a federated-learning
environment. The federated-learning model, without the use
of image data, achieved a sensitivity of approximately 92.31%,
which increased to 94.12% with MRI integration. They showed
how LNM detection may be transformed by emphasizing pa-
tient privacy and raising diagnostic standards across various
medical centers.

Again, a study conducted by Moshawrab et. al. [28] provides
a comprehensive overview of federated learning (FL) aggre-
gation algorithms, discussing their functionalities, drawbacks,
and future possibilities. They presented the current state of ag-
gregation algorithms in FL and provided a way to categorize
them. By presenting the importance of aggregation in FL, they
addressed the privacy-preserving nature of federated machine
learning that helped to provide insight for researchers aiming to
improve FL aggregation methods and aided in the understand-
ing and development of privacy-centric machine learning tech-
nologies.

To summarize, there are some discoveries which were made
from the literature review. Firstly, except some recent works,
very few such instances of incorporation of Federated Learn-
ing in the classification of cervical cancer cells are available.
Secondly, most existing systems do not show concern for the
development of a personalized Convolutional Neural Network
model for the purpose of classification.

3. Federated Learning Framework

Traditional machine-learning approaches require a central-
ized location i.e. a single server to aggregate user data and carry
out the complete training process, whereas federated learning
allows continuous training on edge devices while ensuring no
sensitive information exits the device. In the classical machine
learning model, it is quite common to assume that the data are
independent and identically distributed. On the contrary, fed-
erated learning assumes the data to be non-IID because in real-
world circumstances, various users have different datatypes and
the expected and actual number of actors varies.

Federated Learning is a collaborative machine learning tech-
nique where multiple edge devices(clients) participate remotely
to train a common, robust machine learning model (server)
without exchanging/sharing their local data samples with the
centralized location or server which helps organizations to
make better decisions with AI, addressing critical issues of
data privacy, security, access rights and access to heterogeneous
data.

There are 3 types of data partitioning systems in federated
learning: horizontal data partitioning, vertical data partitioning
and federated transfer learning system. In horizontal partition,
each edge device has overlapping features with different obser-
vations. For instance, if multiple hospitals in various countries
collect data on breast cancer patients but have little to no over-
lapping of patients, that distribution is horizontal partitioning
[29]. In the vertical partition, each device has different features
with overlapping observations. For example, if a hospital sug-
gests patients to a specific surgeon, both the hospital and the
surgeon collect different kinds of data but will have many com-
mon patients [29]. If there are a few similar samples with few
similar features, but also samples and features do not overlap,
then federated transfer learning can be applied in this situation
[29].

Depending on real-life scenarios, limitations of available
datasets and problem statements, different kinds of ML mod-
els are decided to be used as the foundation model of federated
learning architecture. Neural networks, decision trees, and even
linear models are used on basis of use cases. This base model
serves as a global model which is initially distributed as an un-
trained or pre-trained model from a central server to the local
clients. The clients then collaboratively train the global model
by continuously improving it in every communication round be-
tween the central server and the local clients.

There are two types of FL communication architecture: cen-
tralized and decentralized. Both types of architecture work sim-
ilarly; the distinction between them is in client-server commu-
nication. In a centralized federated learning system, a single
central server is used, so there is only one possible point of fail-
ure [30]. In a centralized federated learning environment, a cen-
tral server is utilized to manage all the participating nodes and
orchestrate the various steps of the algorithms. The server is in
charge of selecting the nodes at the start of the training process
and aggregating the received model parameter updates. The
server can end up being the system’s bottleneck because each
of the chosen nodes must communicate updates to the server
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Figure 1: Architecture of Federated Learning

[29]. Decentralized federated learning does not rely on a sin-
gle central server to provide updates, in contrast to centralized
federated learning [30]. In this architecture, the nodes can col-
laborate among themselves to produce the global model. As
the model updates are solely transferred between linked nodes
without the coordination of a central server, this configuration
avoids single-point failures.

Figure 1 shows the overview of a federated learning frame-
work. In a single federated round, the following steps are car-
ried out: at first, the client devices obtain the initialized global
model from the cloud server. Next, they train the model using
the local datasets and generate the most recent local model up-
date (model parameters). Then, they send the updated weights
of their locally trained model to a central server. After that,
the cloud server collects various local update parameters and
aggregates the model weights received from all of the client de-
vices by averaging them together. The averaged weights are
then sent back to the client devices, which use them to train
their local models further. Finally, this process is repeated until
the models on the client devices reach satisfactory accuracy.

Stochastic Gradient Descent (SGD) can be applied to as a
base to the Federated Learning training algorithm. A single
batch gradient calculation is done on each round of commu-
nication. Although this approach is computationally efficient,
it requires a large number of training rounds in order to pro-
duce good models. One approach of FedSGD is that, the client
computes the gradient, updates the model and sends it to the
server. Now, if the model is updated multiple times before be-
ing sent to the server for aggregation, then the method is called
FederatedAVG (or FedAVG). Here, the computation is kept in
these parameters: wt (model weights on communication round
t), wk

t (model weights on communication round t on client k), C
(Fraction of clients participating in that round), E (No. of train-
ing passes each client makes over its local dataset each round),
B (Local minibatch size used for client updates), K (number
of clients indexed by k), Φk (set of data points on client k),
nk (number of datapoints on client k), η (learning rate). The
pseudo code for FedAVG algorithm is given below:
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Algorithm 1 Pseudo code of FedAVG
Server executes:
initialize w0
for each round t = 0, 1, . . . do

m← max(C · K, 1)
S t ← random set of m clients
for each client k ∈ S t in parallel do

wk
t+1 ← ClientUpdate (k,wt)

wt+1 ←
∑K

k=1
nk
n wk

t+1

ClientUpdate (k,w) : // Run on client k
B ← ( split Φk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w← w − η∇ℓ(w; b)

return w to server

4. Methodology

The methodology adopted in this study in presented in Fig-
ure 3. Defining the research objectives through reviewing re-
lated literature is the first step of the applied research method-
ology. Then the dataset of pap smear test cervical cell images
SIPaKMeD Dataset [4] is acquired. This dataset is the largest
cervical cancer dataset available containing a total of 4049 im-
ages of isolated cells (each of size 66X66), taken manually from
the cluster cell images of Pap smear slides, and used for the
development of classic ML models and the base model of FL
architecture. The cell images are divided into five categories in-
cluding 813 images of Dyskeratotic cells, 825 images of Koilo-
cytotic cells, 793 images of Metaplastic cells, 787 images of
Parabasal cells, and the remaining 831 images of Superficial-
Intermediate cells. Figure 2 depicts various cell images of this
dataset.

Two approaches are followed for the classification of those
images. In the first phase, various CNN models are developed
and integrated with FL architecture in three different experi-
mental settings. Hyperparameter tuning is carried out to figure
out the best possible architecture for a specific setting. In the
second phase, different traditional Machine Learning models
are developed to determine which would provide an overall in-
creased accuracy. Subsequently, the performance of these mod-
els are compared with that of CNN based FL architecture.

5. Development of FL Architecture

5.1. Data Partitioning
The quality and distribution of data have a considerable im-

pact on the methods that are required to be employed for cancer
cell classification. To correctly evaluate the performance of a
model in machine learning (ML), the data must be dispersed
independently and identically (IID). For data to be IID, all ran-
dom variables must have the same probability distribution and
be mutually independent. The real-world data distributions are
hardly IID. Deep learning algorithms often fail to generalize
well when applied to the medical data of a different hospital.
However, FL helps to overcome a certain institution’s biases
by aggregating models from different institutions. To test the

validity of Federated Learning for the classification of Cervi-
cal Cancer, three different experimental settings were created.
Among them, two of the settings have IID distribution of data
and the remaining setting has non-IID distribution of data. Data
distribution for three different settings is shown below in Table
1, 2 and 3.

Table 1: Division of images in Experimental Setup 1 (IID)

Class Name Client 1 Client 2 Client 3 Test
Dyskeratotic 230 230 230 123
Koilocytotic 230 230 228 137
Metaplastic 215 215 215 148
Parabasal 215 215 215 142

Superficial-
Intermediate

230 235 231 135

Table 2: Division of images in Experimental Setup 2 (IID)

Class
Name

Client 1 Client 2 Client 3 Valid Test

Dyskeratotic 195 218 237 81 82
Koilocytotic 228 220 212 82 83
Metaplastic 219 199 216 79 80
Parabasal 200 217 212 79 79

Superficial-
Intermediate

237 225 202 83 84

Table 3: Division of images in Experimental Setup 3 (non-IID)

Class
Name

Client 1 Client 2 Client 3 Valid Test

Dyskeratotic 650 0 0 81 82
Koilocytotic 0 660 0 82 83
Metaplastic 0 634 0 79 80
Parabasal 0 0 629 79 79

Superficial-
Intermediate

0 0 664 83 84

5.2. FL on Experimental Setting 1

5.2.1. Data Preprocessing
The Keras ImageDataGenerator class was used for a few ge-

ometrical transformations, including zooming, shearing, rescal-
ing and horizontal flips. Keras model for cervical cell classifica-
tion was developed using Convolutional Neural Networks. The
input shape argument for the 2 CNN Model was set to (66, 66,
3). This specifies the shape of the input images that the model
has been trained on. The input images were expected to have a
width of 66 pixels, a height of 66 pixels, and 3 color channels
(corresponding to the Red, Green, and Blue color channels).
The final output shape of the Keras model was five as in the
number of cell classes. These five values were output by the
last layer of the model, which has a sigmoid activation func-
tion.

5.2.2. Proposed CNN Architectures
A convolutional neural network(CNN) is made up of an in-

put layer, an output layer, and numerous hidden layers in be-
tween. Convolution, activation or ReLU, and pooling are three
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Figure 2: Visualization of the SIPAKMED dataset

Figure 3: Methodological Outline

of the most used layers of a CNN. In order to extract features
from the input image, a convolution layer is used. The image
is convolved using a kernel (or filter) in this process. A ker-
nel is a little matrix having a height and width smaller than the
picture to be convolved. It is often referred to as a convolution
matrix or convolution mask. For convolution, the number of
channels in the kernel must match the number of channels in
the input image. After the convolution layer, max pooling layer

is used to decrease the spatial dimensions of the feature maps
created by the convolution layer while preserving the most cru-
cial features. The convolution neural network can operate more
quickly and effectively by controlling its computational com-
plexity with the aid of the decreased dimentions of these feature
maps. After the convolutional or fully connected layer, a batch
normalization layer should be included. This layer normalizes
the input values of the layer to which it is attached. The “batch”
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in batch normalization refers to the fact that the normalization
is carried out on a batch of input data. The training of CNNs
can be sped up by batch normalization. By introducing noise
to the input data, it can also assist in lowering overfitting. Ad-
ditionally, it can enhance CNNs’ generalization abilities. As a
result, the network is better equipped to identify unfamiliar im-
ages. The max-pooling layer sends the feature map to the flat-
ten layer, which transforms it from a multi-dimensional array
into a one-dimensional array that the dense layers can under-
stand. To avoid model overfitting, dropouts are utilized after
the dense layers of the network. In this research, several CNN
architectures were developed to integrate and test with Feder-
ated Learning Architecture. After hyper-parameter tuning, two
architectures stood out in this particular setting, as their test ac-
curacy went above 85%. CNN architecture 1 and 2 is shown in
Table 4 and 5 respectively. Hyper-parameter set 1 represented
in Table 6 was used for CNN model 1 and Hyper-parameter set
2 and 3 represented in Table 7 and Table 8 was used for CNN
model 2.

Table 4: CNN Architecture 1

Layer Type Output Shape
Conv2D (None, 64, 64, 16)
Conv2D (None, 62, 62, 32)
MaxPooling2D (None, 31, 31, 32)
Conv2D (None, 29, 29, 64)
MaxPooling2D (None, 14, 14, 64)
Conv2D (None, 12, 12, 128)
MaxPooling2D (None, 6, 6, 128)
Dropout (None, 6, 6, 128)
Flatten (None, 4608)
Dense (None, 64)
Dropout (None, 64)
Dense (None, 5)

Table 5: CNN Architecture 2

Layer Type Output Shape
Conv2D (None, 64, 64, 16)
Conv2D (None, 62, 62, 32)
MaxPooling2D (None, 31, 31, 32)
BatchNormalization (None, 31, 31, 32)
Conv2D (None, 29, 29, 64)
MaxPooling2D (None, 14, 14, 64)
Conv2D (None, 12, 12, 128)
MaxPooling2D (None, 6, 6, 128)
Dropout (None, 6, 6, 128)
Flatten (None, 4608)
Dense (None, 256)
Dense (None, 128)
Dropout (None, 128)
Dense (None, 5)

Table 6: Hyperparameter set 1 used for CNN Model 1

Parameters Used Values
Number of Conv2D layers 4
Number of MaxPooling2D layers 3
Number of Dense layers 2
Number of Dropouts 2
Activation functions used ReLU for Conv2D layers and Dense layers,

and sigmoid for the output layer
Loss function categorical crossentropy
Optimizer Adam
Input image size 66 x 66 x 3 (RGB image with 66 height, 66

width, and 3 channels)
Batch Size 100
Total Communication Round 10
Steps Per Epoch for Local Train 3
Number of Epochs for Local Train 150
Learning Rate 0.013

Table 7: Hyperparameter set 2 used for CNN Model 2

Parameters Used Values
Number of Conv2D layers 4
Number of MaxPooling2D layers 3
Number of Dense layers 3
Number of Dropouts 2
No of BatchNormalization Layer 1
Activation functions used ReLU for Conv2D layers and Dense layers,

and sigmoid for the output layer
Loss function categorical crossentropy
Optimizer Adam
Input image size 66 x 66 x 3 (RGB image with 66 height, 66

width, and 3 channels)
Batch Size 10
Total Communication Round 20
Steps Per Epochs for Local Train 60
Number of Epochs for Local Train 30
Learning Rate 0.001

Table 8: Hyperparameter set 3 used for CNN Model 2

Parameters Used Values
Number of Conv2D layers 4
Number of MaxPooling2D layers 3
Number of Dense layers 3
Number of Dropouts 2
No of BatchNormalization Layer 1
Activation functions used ReLU for Conv2D layers and Dense layers,

and sigmoid for the output layer
Loss function categorical crossentropy
Optimizer Adam
Input image size 66 x 66 x 3 (RGB image with 66 height, 66

width, and 3 channels)
Batch Size 10
Total Communication Round 30
Steps Per Epoch for Local Train 100
Number of Epochs for Local Train 40
Learning Rate 0.001

Table 9: Evaluation Metrics on Test Data

Model Hyper-
Parameter
Set

Accuracy Precision Recall F1-score ROC-
AUC
Score

CNN 02 3 88.46% 89.58% 88.47% 87.83% 93%
CNN 02 2 87.00% 86.38% 84.47% 86.83% 92%
CNN 01 1 82.18% 82.59% 83.47% 82.62% 89%

From Table 9, it is evident that the test results obtained from
CNN architecture 02 and hyper-parameter 3 is the best among
all combinations of CNN architecture and hyper-parameter sets
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in this setting.

5.2.3. Result Analysis of CNN-based FL
An analysis of a machine learning model’s performance on a

set of test data is summarized by a confusion matrix. It is fre-
quently used to assess how well classifier models work. These
models try to predict a categorical label for each input event.
The matrix shows how many true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) the model
generated using the test data. If there are n classes, the matrix
will have a shape of nxn.

The confusion matrix along with One-Vs-Rest Multiclass
ROC curve on test data for the three configurations: CNN ar-
chitecture 01 + Hyper-parameter Set 01, CNN architecture 02
+ Hyper-parameter Set 02, and CNN architecture 02 + Hyper-
parameter Set 03 are presented in Figure 4, Figure 5, and Figure
6 respectively. The last configuration performs best among all,
as displayed by the One-Vs-Rest Multiclass ROC curve. Com-
puting a ROC curve for each of the n classes constitutes the
One-vs-the-Rest (OvR) multiclass technique, sometimes called
one-vs-all. A particular class is considered the positive class in
each phase, and the remaining classes are collectively consid-
ered the negative class. It is evident from the plots that the AUC
for each class in the Configuration 3 ROC curve is higher than
the Configuration 1 and 2 ROC curves.

5.3. FL on Experimental Setting 2
5.3.1. Data Preprocessing

The torchvision.transforms module provides standard picture
transformations. They can be chained together with Compose.
Randomized transformations apply the same transformation to
all photos in a particular batch, but yield different transforma-
tions across calls. In this setting, in built modules of Pytorch
were used for image augmentation: RandomRotation, Random-
ResizedCrop, RandomHorizontalFlip, ToTensor and Normal-
ize. RandomRotation rotates an image by an angle. Random-
ResizedCrop selects a random portion of an image and resizes
it to a square with a side length of 28 pixels. This crop taken
from the original image has a random area (H * W) and a ran-
dom aspect ratio. The crop is then scaled to a specific size.
The RandomHorizontalFlip function helps to flip a picture hor-
izontally at random with a specified probability. The ToTensor
function converts a PIL Image or numpy.ndarray (H x W x C)
in the range [0, 255] to a torch.FloatTensor of shape (C x H x
W) in the range [0.0, 1.0]. The Normalize function is used to
normalize a tensor image by calculating its mean and standard
deviation. It also helps to obtain data within a certain range and
eliminates skewness, allowing the model to learn more quickly
and effectively.

5.3.2. Proposed CNN Architecture
In this setting similar to IID distribution, after thoroughly

evaluating several CNN architectures through hyper-parameter
tuning, the final test accuracy received was 94.36%. The CNN
architecture which is used for both experimental setting 2 and
3, is shown in Table 10. Hyper-parameters used for this archi-
tecture is shown in Table 11.

Table 10: CNN Architecture 3

Layer Type Output Shape
Conv2D [-1, 32, 28, 28]
ReLU [-1, 32, 28, 28]
MaxPooling2D [-1, 32, 14, 14]
Conv2D [-1, 64, 14, 14]
ReLU [-1, 64, 14, 14]
MaxPooling2D [-1, 64, 7, 7]
Linear [-1, 128]
ReLU [-1, 128]
Linear [-1, 5]

Table 11: Hyperparameters Set 4 used for CNN Model 3 in Experimental Set-
ting 2

Parameters Used Values
Number of Conv2D layers 2
Number of MaxPooling2D layers 2
Activation functions used ReLU(Conv2D layers)
Loss function Categorical Cross-entropy
Optimizer SGD
Input image size 28 x 28
Batch Size 5
Total Communication Round 20
Number of Epochs for Local Train 10
Learning Rate 0.01

5.3.3. Result Analysis of CNN-based FL

In Table 12, the classification report of FedAvg on
SIPAKMED dataset is presented for this setting. In an IID dis-
tribution of data, 94.36% test accuracy was obtained with a roc-
auc score of 98.2%. Curve for training-Vs-validation accuracy
was shown in Figure 7. While confusion matrix on test data
is presented in Figure 8. And also the One-Vs-Rest Multiclass
ROC curve is presented in the Figure 9.

Table 12: Classification Metrics for Experimental Setting 2

Class
Metrics

ROC
AUC
Score

Precision Recall F1-Score

Dyskeratotic 0.95 0.94 0.94 0.9817
Koilocytotic 0.88 0.90 0.89 0.9080
Metaplastic 0.89 0.90 0.89 0.9395
Parabasal 0.96 0.99 0.97 0.9858
Superficial-Intermediate 0.97 0.93 0.95 0.9713

Test accuracy 0.943
ROC AUC Score 0.982
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Figure 4: Confusion Matrix and ROC AUC Curve with CNN 1 + Hyper-parameter Set 1

Figure 5: Confusion Matrix and ROC AUC Curve with CNN 2 + Hyper-parameter Set 2

Figure 6: Confusion Matrix and ROC AUC Curve with CNN 2 + Hyper-parameter Set 3
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Figure 7: Train Vs. Validation Accuracy and Loss

Figure 8: Confusion Matrix

Figure 9: ROC Curve for test data

5.4. FL on Experimental Setting 3
5.4.1. Data Preprocessing

In this setting, in built modules of Pytorch were used
for image augmentation: RandomRotation, RandomResized-
Crop, RandomHorizontalFlip, RandomVerticalFlip, ToTensor
and Normalize. RandomVerticalFlip helps to flip an image ver-
tically.

5.4.2. Proposed CNN Architecture
CNN architecture described in Table 10 was used in this

setting as well. The final test accuracy received was 78.43%.
Hyper-parameters used for this setting is shown below in Table
13.

Table 13: Hyperparameters Set 5 used for CNN Model 3 in Experimental Set-
ting 3

Parameters Used Values
Number of Conv2D layers 2
Number of MaxPooling2D layers 2
Activation functions used ReLU(Conv2D layers)
Loss function Categorical Cross-entropy
Optimizer SGD
Input image size 28 x 28
Batch Size 5
Total Communication Round 250
Number of Epochs for Local Train 15
Learning Rate 0.001

5.4.3. Result Analysis of CNN-based FL
In Table 14, the classification report of FedAvg on

SIPAKMED dataset is presented for non-IID setting. In a non
IID distribution of data, 78.43% test accuracy was obtained
with a roc-auc score of 89.9%.

Figure 10 shows a comparison curve for accuracy and loss
of training and validation data on total communication rounds.
The confusion matrix on test data for non-IID setting is pre-
sented in Figure 11. The One-Vs-Rest Multiclass ROC curve
was also presented in the Figure 12. To compare the perfor-
mance of CNN based FL architectures with classical ML mod-
els, the development of existing ML models is shown in section
6.

Table 14: Classification Metrics for Experimental Setting 3

Class
Metrics

ROC
AUC
Score

Precision Recall F1-Score

Dyskeratotic 0.93 0.82 0.87 0.90
Koilocytotic 0.70 0.69 0.70 0.76
Metaplastic 0.78 0.80 0.79 0.88
Parabasal 0.95 0.91 0.93 0.97
Superficial-Intermediate 0.63 0.73 0.67 0.80

Test accuracy 0.784
ROC AUC Score 0.899
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Figure 10: Train Vs. Validation Accuracy and Loss

Figure 11: Confusion Matrix

Figure 12: ROC Curve for test data

6. Development of Classical ML Models

6.1. Data Pre-processing

Gray-scale conversion of images was done to remove the dif-
ficulties associated with computational requirements. In order
to feed information from a 1-D array into a classification model,
a technique known as flattening is utilized to transform multidi-
mensional arrays into 1-D arrays. The images are resized into
28x28 pixels, and a data frame of 784 pixels for each image
was created. Each image was re-scaled to the range of 0 to 255.
The dataset was divided into train and test images with a test
ratio of 20%. The Synthetic Minority Oversampling Technique
(SMOTE) was used for handling imbalanced data. Figure 13
shows the effects of using smote.

Figure 13: Class distribution before and after applying SMOTE

6.2. Result Analysis of the ML Models

Table 15 shows the value of these performance metrics: accu-
racy, precision, recall, and f1-score for train data as well as test
data for classical ML models. Figure 14,15,16 shows the con-
fusion matrices for test data for the top 3 models: LightGBM,
Histogram Gradient Boosting, and Extratrees. The LightGBM
model is found to perform better than the other models.

Figure 14: Confusion matrices for LightGBM
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Figure 15: Confusion matrices for Histogram Gradient Boosting

Figure 16: Confusion matrices for Extra Trees

6.3. Cross Validation Results

Cross-validation is a resampling method that trains and tests
a model using different portions of the data on different itera-
tions. The number of groups into which a specific data sample
is to be divided is indicated by the procedure’s sole parameter,
k. The process is hence frequently referred to as k-fold cross-
validation. In this study, 10-fold cross validation is applied on
the entire dataset. Here the top 2 models which performs best
on test data are: LightGBM and Extreme Gradient Boosting.
In Table 16, the results are shown for LightGBM model and in
Table 17, the results are shown for Extreme Gradient Boosting
model.

7. Performance Comparison

In this section, a brief comparison is shown between the per-
formance metrics of two metholodogies. The performance met-
rics selected for the comparison are: test accuracy, test preci-
sion, test recall and test f1-score. From Table 18, it can be
concluded that CNN-based FL-architecture performs best com-
pared to the traditional ML models.
Furthermore, only one study [26] was found that showed a test
accuracy of 81.91% with FedAvg and 83.313% with FedProx
algorithm on a non-IID setting where each client had a unique
class of data. But their acquired dataset also contained lung and
colon cancer classes. As a result, the performance metrics of
this research cannot be directly compared with this study. As

such, a conclusion can be drawn that the efficacy and validity of
Federated Learning is proved via different experimental settings
through this research.

8. Discussion & Conclusion

This study has attained a standard test accuracy by harness-
ing the benefits of integrating Federated Learning with deep
learning algorithms. The proposed CNN-based FL architecture
showed test accuracy of 94.36% and 78.43% on an IID and a
non-IID setting respectively. A brief comparison was drawn
between the proposed architectures and classical ML models
which proved the significant performance of federated learning
over classical ML models.

Although there have been numerous studies for the classifica-
tion of cancerous cervical cells, further research is required to
accurately classify these cells through advanced Deep Learn-
ing and Federated Learning techniques. There has been lim-
ited research conducted on the classification of cervical cancer
cells through multiple Federated Learning approaches. To over-
come data sharing challenges faced in related studies, this study
in cervical cancer classification will be a significant initiation
for more relevant research in the future. The findings of this
study can be used as a benchmark for an unbiased assessment
of a computer-assisted diagnostic tool that would be selected by
physicians in a real world setting.

It is important to acknowledge that privacy is a valid concern
that the current work does not fully address. However, employ-
ing techniques like differential privacy and secure multi-party
computation can help extend this research more and tackle
all issues related to data security. As a result, future work for
this research will focus on introducing differential privacy,
which would help to give results as accurate as possible while
addressing data privacy concerns by enabling confidentiality
of a database. Moreover, with more diverse datasets the scope
of this research can be more broadened. The system can be
upgraded through continuous user feedback by deploying in the
real world. Different pre-trained models can also be tested to
determine which may result in better accuracy when integrated
with federated learning.
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Table 15: Performance metrics for the developed models

Model Train Test

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
LightGBM 99.9% 99.9% 99.9% 99.9% 72.0% 71.4% 71.8% 71.4%
HGB 100.0% 100.0% 100.0% 100.0% 71.9% 71.5% 71.7% 71.5%
Extratrees 100.0% 100.0% 100.0% 100.0% 70.1% 69.4% 70.1% 69.4%
SVM 69.4% 69.0% 69.4% 68.9% 69.8% 68.9% 69.5% 68.8%
Gradient Boosting 84.6% 84.7% 84.6% 84.5% 68.6% 67.8% 68.5% 67.8%
XGBoost 77.0% 77.5% 77.0% 76.8% 68.3% 67.8% 68.1% 67.4%
MLP 70.5% 71.6% 70.5% 70.4% 67.3% 68.1% 67.0% 66.8%
HGB + XGBoost 76.8% 77.1% 76.8% 76.6% 66.9% 66.2% 66.7% 66.0%

Table 16: Cross validation result for developed LightGBM model

Model Evaluation Metric Datafolds
1 2 3 4 5 6 7 8 9 10 Mean

LightGBM Train Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train Precision 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train Recall 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train F1-Score 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test Accuracy 65.9% 71.3% 72.6% 69.1% 67.9% 70.1% 71.8% 74.3% 69.8% 75% 70.8%
Test Precision 64.9% 71.1% 72.4% 69.1% 67.8% 70.0% 71.7% 74.1% 69.6% 74.8% 70.6%
Test Recall 65.9% 71.4% 72.6% 69.2% 67.9% 70.1% 71.9% 74.4% 69.8% 75% 70.9%
Test F1 Score 65.3% 71.1% 72.5% 68.9% 67.6 70.1% 71.7% 74.1% 69.6% 74.8% 70.6%

Table 17: Cross validation result for developed Extreme Gradient Boosting model

Model Evaluation Metric Datafolds
1 2 3 4 5 6 7 8 9 10 Mean

XGBoost Train Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train Precision 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train Recall 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Train F1-Score 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test Accuracy 67.4% 70.1% 72.3% 68.4% 68.8% 68.6% 70.4% 70.4% 72.6% 73.7% 70.3%
Test Precision 66.6% 69.7% 72.0% 68.3% 69.3% 68.4% 70.2% 70.1% 70.2% 73.8% 70.0%
Test Recall 67.5% 70.1% 72.4% 68.4% 68.9% 68.7% 70.4% 70.4% 72.5% 73.8% 70.3%
Test F1 Score 66.7% 69.7% 72% 68.1% 68.7% 68.4% 70.2% 70.1% 72.1% 73.5% 69.9%

Table 18: Comparison between the performance metrics of two methodologies on Test data

Methodology Model Accuracy Precision Recall F1-score

Phase 1

CNN 03 + Hyper-parameter Set 4 (IID) 94.36% 94.54% 94.36% 94.32%
CNN 02 + Hyper-parameter Set 3 (IID) 88.46% 89.58% 88.47% 87.83%
CNN 02 + Hyper-parameter Set 2 (IID) 87.00% 86.38% 84.47% 86.83%
CNN 01 + Hyper-parameter Set 1 (IID) 82.18% 82.59% 83.47% 82.62%
CNN 03 + Hyper-parameter Set 5 (non-IID) 79.60% 80.17% 79.66% 78.77%

Phase 2

LightGBM 72.0% 71.4% 71.8% 71.4%
Histogram Gradient Boosting 71.9% 71.5% 71.7% 71.5%
Extratrees 70.1% 69.4% 70.1% 69.4%
SVM 69.8% 68.9% 69.5% 68.8%
Gradient Boosting 68.6% 67.8% 68.5% 67.8%
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